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Abstract

Hydrogenation of ErNi (space groupR3m) has been investigated by neutron powder diffraction on deuterided samples. At least three
ErNi3D, phases were found at deuterium compositionsl.3 (31), x ~2 (8,) andx ~3.8 (y), the latter being stable only under high deuterium
pressure. Their structures show anisotropic lattice expansions and are non-centrosymmetric (spa&:grdaghe 3;-phase, deuterium
occupies two interstitial sites in the ABype building block of which one provides three ligands of a Ni-centered, débahedron and the
other bridges a Ni triangle. In th@&- andy-phases, up to five new deuterium sites become patrtially occupied in both th&ABAB;-type
building blocks. One of them provides the fourth ligand to the Ni@rahedron thus suggesting directional bonding effects similar to those
observed in nickel-based complex metal hydrides, such as bldWg and MgNiH .
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction ErNis—H system, relatively detailed pressure-composition
isotherms indicate at least two EgWi, hydride phases.
Intermetallic compounds AB(A = rare earth, Ca and One @) is stable under ambient conditions and displays a
Mg; B = Ni, Co and Fe) and their ternary derivatives compositional range of = 2.2-2.8[5] (orx = 1.9-2.5[6])
usually crystallize with the hexagonal CeMype (space  under~1.3-15 bar hydrogen, while the othej) {s unstable
group P6s/mmc) or the rhombohedral Publtype (R3m) under ambient conditions and displays a compositional range
structure. Both are built up by ARHaucke phase) and AB of x = 3.7-5.5 at—25°C under 3—-2000 bar hydrogé¢n,8].
(C14 Laves-Friauf phase)-type slabs. Upon hydrogenation So far only cell parameters as determined from X-ray powder
they form various hydride phase$,(y) that are called diffraction are availabl§6—8]. Here, we report on the synthe-
“interstitial” because hydrogen occupies various metal sisand structure of three Erfii, hydride phase$(, B2 and
interstices in the AB (B, y) and ABs-type (y) slabs (for a v) as studied by neutron powder diffraction on deuterides. It
recent review see Refl]). Only few hydrides have been will be shown that they have non-centrosymmetric structures
structurally characterized. The most complete study is thatand display hydrogen configurations around the transition
on the cobalt-based YGeD system, which displays three element that differ considerably from their cobalt analogues.
rhombohedral hydride phase3i( B2 andy [2]). All have
centrosymmetric structure®8m). Among the nickel-based
systems, structurally characterized compounds are rhom-
bohedral HoNiD1 g [3] whose structure, however, is of
unknown precision and hexagonal CeDj g [4]. For the

2. Experimental
2.1. Synthesis

Samples of nominal composition EfNwere prepared
* Corresponding author. Tel.: +41 22 379 6231; fax: +41 22 379 6864. DYy arc melting erbium (99.99%, Alfa) and nicket$9.9%,
E-mail address: klaus.yvon@cryst.unige.ch (K. Yvon). Alfa) pieces under argon atmosphere, annealing the ingots
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at 800°C for 1 month (quartz tube, 1 bar argon) followed by tem installed at PSI, evacuated for 1 h, deuterided at 10 bar
quenching in cold water. X-ray powder diffraction showed and 150°C for 5h and gradually cooled to 2C during

that the samples were single-phase and consisted of the20h. The reacted powder was rapidly refilled int® @on-
expected rhombohedral ErNphase. Deuteration (Dgas, tainer, tightly sealed with indium wire and replaced on HRPT
99.8%, AGA) was carried outin autoclaves at temperatures of (> = 1.49418(3)A, high intensity mode, @ range 4—162
—78, 20 and 80C and deuterium pressures of up to 100 bar (dmin = 0.754,&), step size 0.9, data collection time 10 h).

for 2—-7 days without preliminary activation. The reaction Structure refinement confirmed the presence-&0% 31-
products were fine black powders and could be handled in airphase and-~10% «-phase. Two deuterium atom positions
without detectable oxide formation. They consisted of three were identified on nuclear difference density Fourier maps of
individual deuteride phases Edil, (referred to a1, B2 thepi-phase and their positions refined in space gre8m.
andy) as shown by X-ray analysis. No evidence for an appre- In spite of a relatively good fitg = 0.0340,Rg = 0.0258,
ciable solid solution of deuterium in thephase was found.  x2 = 5.55, 35 parameters) the close proximity of two nearly
In view of the relatively high equilibrium pressuresZ— half occupied deuterium sites (D—B 1.61,&) in the struc-

100 bar atroom temperature) the samples desorbed deuteriunture suggested a loss of inversion symmetry. Refinements
so rapidly that their structure determination by conventional in non-centrosymmetri®@3m (three Er, five Ni and two D

ex situ diffraction methods was not possible. Therefore, the sites) lead to significantly loweR-factors Rg = 0.0224,
samples were transported in autoclaves under deuterium presRg = 0.0157, x° = 3.59, 40 parameters) and smaller stan-
sure at a neutron source, or prepared on-site immediately be-dard uncertainties of the occupational and positional param-
fore the diffraction experiments. Deuterium contents were eters of the deuterium sites. As expected, the latter sites were
estimated from X-ray measurements of rhombohedral cell almost fully occupied and their closestdistance was D1~D1
volumes that varied in the rang&s= 554-5503 and 574 2.45A. Atom coordinates and refinement results are listed in
577A3 for the B1 andBy-phases, and’ = 623-635A3 for Table 2

the y-phase. The coexistence pf and2 phases in some

samples confirmed that these were separate phases, such @s4. Structure characterization of B2-ErNizD~20 and

those reported in the YGeD system2]. y-ErNi3D-38

2.2. Structure characterization of deuterium-free ErNi3 After the above experiment, the sample was vacuum
pumped at 80C for complete deuterium desorption, exposed
Diffraction data were collected for a 6 g sample on the to 100bar of deuterium gas at 80 for about 1 day and
neutron powder diffractometer HRPT at SINQ (PSI; Villi-  then slowly cooled down to room temperature. It was kept
gen) under standard conditions: cylindrical vanadium con- under these conditions for 5 days and then transported in
tainer, data collection time 8h, high intensity modes an autoclave under 100 bar deuterium pressure to PSI where
1.15470(4)A, 26 range 4-16% (dmin = 0.583A), step size it was rapidly refilled into a V container and tightly sealed
0.05. Structure refinement was carried out with the FULL- with indium wire. Neutron diffraction data were collected
PROF SUITE program packag@] based on the atomic co- on HRPT { = 1.493814(19)A, high intensity mode, @
ordinates of the Pulitype structure (space gro3m, two range 4-157 (dmin = 0.76,&), step size 0.9, data collec-
Er and three Ni sites). Attempts to refine the structure in non- tion time 11 h). Two phases, referred to@s and~y, were
centrosymmetricR3m led to parameter oscillations around identified in the patternFig. 1). Up to seven deuterium sites
the centrosymmetric values, thus justifying the centrosym- were located on difference Fourier maps and their positions

metric choice. Refinement results are listedable 1 refined in centrosymmetri®3m. Structure refinements in
non-centrosymmetri®3m, such as with th@1-phase were
2.3. Structure characterization of B1-ErNizD~1 2 not feasible because of the small reflections-to-parameters

ratio. On the other hand, the synthesis of a single-phase
After the above experiment the alloy sample was re- deuteride sample was impracticable due to the very high
filled into a steel cylinder, connected to a deuteration sys- deuterium equilibrium pressure-20 bar) required for an

Table 1

Atomic coordinates and thermal parameters of BfNiom neutron powder diffraction; e.s.d’s in parentheses

Atom  Wyckoff site  x y z Uegisd A2 U1 (A% U2 (R?)  Uss(A?) U (R U1s(A?)  Ux((A?)
Erl % 0 0 0 0.0081(9) 0.0079(8) Upy 0.0085(11) (¥2)U1; O 0

Er2 6 0 0 0.13923(7)  0.0085(6) 0.0071(5) U11 0.0113(8) (¥2)U11 0 0

Nil 3b 0 0 1/2 0.0066(8) 0.0082(8) Uiz 0.0033(9) (U1 O 0

Ni2 6¢ 0 0 0.33309(7) 0.0077(6) 0.0086(6) U11 0.0059(7) (¥2)U11 0 0

Ni3 184 0.5002(1) —x 0.08222(4) 0.0069(2) 0.0063(2) U11 0.0080(3)  0.0034(2) 0.0003(2) —U13

2 R3m, a = 4.94794(7),c = 24.2909(5)A, ¢/a ~4.91,V = 51502(2) A3, all sites fully occupiedRg = 0.021, Re = 0.015, x2 = 1.99, R, = 0.017,
Rywp = 0.022, 397 “independent” reflections, 119 “effective” (accounting resoly@prreflections; preferred orientation along [001] 1.036(3).
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Table 2

Structure data for the non-centrosymmegicErNizD1 232from neutron powder diffraction, e.s.d’s in parentheses

Atom Wyckoff site x y z Uegliso (,&2) Occupancy
Erl K71 0 0 —0.0008(4) 0.0068(6) D(-)
Er21l % 0 0 0.1311(4) 0.0051(5) .a(-)
Er22 % 0 0 0.8692(4) U(Er21) 10(-)

Nil 3 0 0 0.50008 0.0055(6) 10(-)
Ni21 7! 0 0 0.3287(3) 0.0093(4) .Q(-)
Ni22 2 0 0 0.6621(3) U(Ni21) 10(-)
Ni31 9% 0.4999(5) —x 0.0726(2) 0.00505(18) .Q(-)
Ni32 P 0.5024(5) —x 0.9190(3) U(Ni31) 10(-)

D1 9% 0.5022(6) —x 0.1368(3) 0.0172(9) 0.916(11)
D2 &7 0 0 0.2182(4) U(D1) 0.952(18)

@ Prepared at 20C and 10 bar deuterium pressure applied for a few hours, space BBoup = 4.97180(7)¢ = 25.9012(5)5\, c/a ~5.24,V = 55447(2)
A8 Rg = 0.022,Rr = 0.016,x% = 3.6, Rp = 0.015,Ryp = 0.019;a-ErNizD, (x < 0.1):V = 517.3(2) A3, Rg = 0.035; 410 “independent” reflections, 142
“effective” (accounting resolutiofd]) reflections; refined phase conterfs: /« = 0.88/0.12.

b Fixed.

42000 Their ranges of existence as estimated from the present
37000 F diffraction data arex = 1.23-1.33 B1), x ~ 2 (B2) and
a2000F x = 3.44-3.83 {), corresponding to a maximum hydrogen
27000k storage efficiency of~ 1.1wt.%. The upper limit of the

i relatively unstabley-phase depends on deuterium pressure
22000F and can be estimated on geometrical grounds to+e4.33
17000} (1.26 wt.% of hydrogen). The reported pressure-composition
12000 b B P S diagramg5—7]support these findings, although they indicate
7000 F ' B ‘ somewhat higher hydrogen contents (9.5 H/f.u.) for all
2000F phases, including the solid solutiertphase for which the

present data indicate < 0.1. As for the cell parameters,
those reported for ErNH1 g [6] correspond to the present
composition ErNiHj »3, those reported for EriH» g and

\ P ErNisH1.1 [7] correspond to ErNH2 o and hydrogen-free
FO) |y Mﬁm AUWUJ LA M~ ErNis, respectively, and those reported for EsNij.g [8] to
S R BRI T R T A R the lower limit of they-phase EI’N;'H3.4. As with the cobalt
- system YCa@D, [2], the cell expansion is very anisotropic.
a While the increase of the axial ratiga at thea—(31 transition
can be attributed to the strong expansion of the ABilding
o) | | ‘W » block along, its decreases at tifla—3, andB,—y transitions
F e MwJM aljk,x\\wbdvm«w —e can be attributed to the interplay between anisotropic expan-
E_ :I | I!}!:‘Nll (LY AL HHT“I:WMHIHNTWW” Ty SionS Of the AB and ABS bUIldIng bIOCkS. Strong eXpanSion
e e e anisotropies are also observed in the nickel-based systems

20, deg. HoNi3D, [3] and CeNiD, [4], while those in YN3D, [10],
CaMgpNigD, [11] and RFegH, [12] are more isotropic.

Fig. 1. Observed (points) and calculated (line) neutron diffraction patterns
for an ErNi sample deuterided at 100 bar (a), calculated patterns of the
contributing phaseg,- (b) and y-deuteride (c). Vertical bars indicate
positions of Bragg peaks; difference pattern represented at the bottom;
A = 1.493814(19A. Deuteration of ErNj leads to a loss of inversion symme-
o i i try. This is the first time that such a symmetry loss is re-
in situ study. Refinement results are listedTable 3 and ported for a rhombohedral ARBH system. Although it has
structural representations of the various phases are shown inyoo experimentally ascertained only for fyephase, it is

Intensity, counts

3.2. Symmetry and interstitial D atom sites

Fig. 2 likely to prevail also for the more deuterium-rig- and
v-phases. Interestingly thgLaNisD7 phase, which consti-

3. Results and discussion tutes the AB slabs in the present structures, also lacks in-
version symmetry (space grolBzmc [13]). This feature is

3.1. Composition and cell expansion presumably related to the propensity of nickel to adopt tetra-

hedral D environments (see Secti®d). In contrast to the
Similar to the cobalt system Y@eD [2] at least three  cobalt system YCgD, that displays only three interstitial D
deuteride phase${, B2, v) occur in the ErNg-D system. sites, the nickel system Erplb, displays up to seven. They
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Fig. 2. Crystal structures of centrosymmetric Eyind non-centrosymmetry -, 82- andy- ErNisD,; B2- andy-structures refined in centrosymmetric space
group R3m; filled circles occupied D sites, open circles unoccupied D-sites in non-centrosymmetric medBlbdnds shorter thary 1.6 A indicated by
lines.

Table 3
Structure data for non-centrosymmetgig-ErNizD1 97(4) and-y-ErNizDz 75s) as refined in centrosymmetriR3m from neutron powder diffraction, e.s.d’s in
parentheses

Atom Wyckoff site x y z Uegiiso(A2) Occupancy
B2-ErNigD1.97

Erl 2 0 0 0 0.0221(19) D)
Er2 & 0 0 0.1312(3) 0.0223(14) ac-)
Nil 3 0 0 12 0.037(6) 1.0(-)
Ni2 6 0 0 0.3336(3) 0.0134(10) a-)
Ni3 181 0.4992(5) —x 0.07774(15) 0.0124(5) ac-)

D1 18 0.4910(12) —x 0.1443(3) 0.020(2) 0.574(17)
D2 & 0 0 0.2155(8) U(D1) 0.385(19)
D3 181 0.50000 0.00000 0.0142(12) U(D1) 0.135(8)
D4 18 0.876(4) _x 0.0725(14) U(D1) 0.148(11)
v-ErNizD3 75

Erl % 0 0 0 0.026(3) 0(-)
Er® 181 0.020(2) —x 0.1391(4) 0.022 15(-)
Nil 3b 0 0 1/2 0.0149(5) D(-)
Ni2 6c 0 0 0.3299(3) U(Ni1) 1.0(-)
Ni3 181 0.4957(6) —x 0.08159(17) U(Ni1) 1.0(-)

D1 18 0.493(3) —x 0.1419(8) 0038(-) 0.383(19)
D2 6¢ 0 0 0.2155 038(-) 0.06(3)
D2 6c 0 0 0.4446(11) ®38(-) 0.49(3)
D3 181 0.50000 0.00000 0.0173(6) aB8(-) 0.361(18)
D4 18 0.8405(16) —x 0.0585(7) 0038(-) 0.480(18)
D5 18 x(D4) —x 0.0911(13) 038(-) 0.303(19)
D6 18 0.815(6) —x 0.1255(19) 038(-) 0.185(17)

B2 - ErNizD1.g7(4) a = 5.0456(3) ¢ = 26.157(3)A, ¢/a ~ 5.18,V = 576 70(8)A3, Ry = 0.022,Rr = 0.015;y - ErNizD3 75(8). a = 5.2398(3) ¢ = 26.605(2)
A, c¢/a~5.08,V = 63260(8)5@, Rg = 0.033,Rr = 0.024; % = 4.3, Rp = 0.015,Ryp = 0.019, 432 “independent” reflections, 115 “effective” (accounting
resolution[9]) reflections; refined phase conterfis:/ y= 0.62/0.38.

a Nil atom was refined anisotropically in tige-deuteride: root-mean-square thermal displacement aldstyvo times higher than in a basal plane.

b Split atom positions: D3 split fromedalonge (D3-D3~ 0.7-0.94); Er2 split from & in basal plane (Er2—Er2 0.324).
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Table 4
Interstitial deuterium sites, metal environments, occupancies, metal-deuterium distances, e.s.d’s in parentheses
D site$'Metal environment Occupancies metal-deuterium distances
Bl-ErNing_zg (R3m) Bz-ErNi3D1_97b(R3m) y-ErNi3D3_75b(R3m)
D1 92(1)% 100% 77%
18h; (AB3 unit) 2Er21 2.490(3) 2Er2 2.55 2Er2 2.63
Trigonal bipyramid Er22 2.216(9) Er22.15 Er22.18
base: Er2Ni Nil 1.648(4) Nil 1.50 Nil 1.59
apices: 2Er Ni31 1.662(9) Ni3 1.74 Ni3 1.60
D2 95(2)% 77%
6c1 (AB2 unit) Tetrahedron Er21 2.258(14) Er2 2.20
Er3Ni 3Ni32 1.703(7) 3Ni3 1.80
D3 27% 72%
18hg (ABs5 unit) 2Erl 2.55 2Erl 2.66
Trigonal bipyramid Ni2 1.50 Ni2 1.56
base: 3Ni Ni2 1.51 Ni2 1.61
apices: 2Er Ni3 1.66 Ni3 1.71
D4° 30% 96%
18h, (AB2/ABs5) Erl 2.18 Erl 2.13
Tetrahedron Er2 1.88 Er2 2.54
2Er2Ni 2Ni3 1.68 2Ni3 1.68
D5°¢ 60%
Erl 2.82
Er2 2.07
2Ni3 1.59
D6 37%
18hs (AB2 unit) Tetrahedron Er2 1.89
2Er2Ni Er2 2.39
2Ni3 1.87
D2 98%
6¢3 (AB2 unit) Tetrahedron Nil 1.47
4Ni 3Ni3 1.67

a Notation according to Ref§2,4] for centrosymmetri&3m.

b values in italics correspond to averages of centrosymmetric model; occupancies stated are those of the non-centrosymmetric model.

¢ D4 and D5 are~ 0.9A apart and occupy symmetry equivalent interstices in the centrosymmetric model, butidepart and occupy non-equivalent
interstices in the non-centrosymmetric model.

show four-fold tetrahedral (D2: Er3Ni, D4-D6: 2Er2Ni, D2  in the ABs block, are occupied. The remaining three sites
4Ni) and five-fold trigonal bipyramidal (D1: 2Er3Ni, D3:  occupied in the nickel compound (D2, D6 and’pP&re not
3Er2Ni) metal configurationsT@ble 4. In thepi-phase, D1 occupied in the cobalt compound. This leads to significantly
(occupancy 0.92) and D2 (0.95) in the AB/pe building different D atom configurations around the transition ele-
block are almost fully occupied, while the ARype block ments (see Sectidh4).

remains empty. In thBo—phase, D1 becomes fully occupied

(~1.0 in the non-centrosymmetric model) while D2 starts 3.3. Interatomic distances

to depopulate+0.8), and two new sites appear: D3(.3)

in the ABs block and D4 {0.3) at the AB/ABs bound- The loss of inversion symmetry in thg;-phase leads
ary. In they-phase D1 depopulates slightly 0.8) and D2 to a significant distortion of the metal matrix as shown by
becomes almost empty-Q.1) while D4 becomes fully oc-  the Ni-Ni bonds that are no longer equivalent (Ni1l-Ni31
cupied ¢1.0), D3 fills up ¢0.7) and three new sites are ~ 2.83, Ni1-Ni32 = 2.63,&). Similar differences presum-
occupied at the ABABs boundary, D5 {0.6), and in the  ably also occur in th@,- andy-phases although they have
AB; block, D6 (~0.4) and D2(~1.0). The D5 and D6 sites  not been ascertained experimentally due to a lack of reso-
occupy adjacentinterstices (D5-B60.9 A) and thus cannot  lution. As expected the NNi bonds bridged by D ligands
be occupied simultaneously. Interestingly, the cobalt systemsexpand considerably, such as Ni1-Ni312.83, while those
YCosD; [2] and ErCaD;, [14] show distinctly differentdeu-  not bridged are less affected, such as Ni2—Ni3 = 2.46 and
terium occupancies. Both structures are centrosymmetric. INNi3—Ni3 = 2.45-2.49\. The shortest metal-deuterium dis-
B1-YCo3D1.24 andB2-YCo3D20, Only one site (D1) in the  tances involving nearly fully occupied D-sites are Ni-D =
AB3 block is occupied while iny-YCo3Da4g and ErC@Da 1 1.59 and Er-D = 2.18.. The shortest D-D contacts are 188
two additional sites, D4 at the AIBABs boundary and D3 (D4-D4).
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